Twilight Princess
Decompilation of The Legend of Zelda: Twilight Princess
Loading...
Searching...
No Matches
e_acos.c File Reference

Functions

double __ieee754_acos (double x) double __ieee754_acos(x) double x
 
 if (ix >=0x3ff00000)
 
 if (ix< 0x3fe00000) = 1
 
 __LO (df)=0
 

Variables

static const static double double one = 1.00000000000000000000e+00
 
static const static double double pi = 3.14159265358979311600e+00
 
static const static double double pio2_hi = 1.57079632679489655800e+00
 
static const static double double pio2_lo = 6.12323399573676603587e-17
 
static const static double double pS0 = 1.66666666666666657415e-01
 
static const static double double pS1 = -3.25565818622400915405e-01
 
static const static double double pS2 = 2.01212532134862925881e-01
 
static const static double double pS3 = -4.00555345006794114027e-02
 
static const static double double pS4 = 7.91534994289814532176e-04
 
static const static double double pS5 = 3.47933107596021167570e-05
 
static const static double double qS1 = -2.40339491173441421878e+00
 
static const static double double qS2 = 2.02094576023350569471e+00
 
static const static double double qS3 = -6.88283971605453293030e-01
 
static const static double double qS4 = 7.70381505559019352791e-02
 
int hx
 
int ix = hx&0x7fffffff
 
 else
 
 s = sqrt(z)
 
 df = s
 
 c = (z-df*df)/(s+df)
 
 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))))
 
 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)))
 
 r = p/q
 
 w = r*s+c
 

Function Documentation

◆ __ieee754_acos()

double __ieee754_acos ( double  x)

◆ __LO()

__LO ( df  )
pure virtual

◆ if() [1/2]

if ( ix >=  0x3ff00000)

◆ if() [2/2]

if ( ) = 1

Variable Documentation

◆ c

c = (z-df*df)/(s+df)

◆ df

df = s

◆ else

else
Initial value:
{
z = (one-x)*0.5
static const static double double one
Definition e_acos.c:44
double x double x
Definition e_atan2.c:58
z
Definition e_pow.c:390

◆ hx

hx
Initial value:
{
double z,p,q,r,w,s,c,df
q
Definition e_acos.c:99
s
Definition e_acos.c:94
w
Definition e_acos.c:101
r
Definition e_acos.c:100
df
Definition e_acos.c:95
p
Definition e_acos.c:98
c
Definition e_acos.c:97

◆ ix

ix = hx&0x7fffffff

◆ one

const static double double one = 1.00000000000000000000e+00
static

◆ p

p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))))

◆ pi

const static double double pi = 3.14159265358979311600e+00
static

◆ pio2_hi

const static double double pio2_hi = 1.57079632679489655800e+00
static

◆ pio2_lo

const static double double pio2_lo = 6.12323399573676603587e-17
static

◆ pS0

const static double double pS0 = 1.66666666666666657415e-01
static

◆ pS1

const static double double pS1 = -3.25565818622400915405e-01
static

◆ pS2

const static double double pS2 = 2.01212532134862925881e-01
static

◆ pS3

const static double double pS3 = -4.00555345006794114027e-02
static

◆ pS4

const static double double pS4 = 7.91534994289814532176e-04
static

◆ pS5

const static double double pS5 = 3.47933107596021167570e-05
static

◆ q

q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)))

◆ qS1

const static double double qS1 = -2.40339491173441421878e+00
static

◆ qS2

const static double double qS2 = 2.02094576023350569471e+00
static

◆ qS3

const static double double qS3 = -6.88283971605453293030e-01
static

◆ qS4

const static double double qS4 = 7.70381505559019352791e-02
static

◆ r

r = p/q

◆ s

s = sqrt(z)

◆ w

return *df w = r*s+c